skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Maochang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract This article describes a systematic study of the oxidative etching and regrowth behaviors of Pd nanocrystals, including single‐crystal cubes bounded by {100} facets, single‐crystal octahedra and tetrahedra enclosed by {111} facets; and multiple‐twinned icosahedra covered by {111} facets and twin boundaries. During etching, Pd atoms are preferentially oxidized and removed from the corners regardless of the type of nanocrystal, and the resultant Pd2+ions are then reduced back to elemental Pd. For cubes and icosahedra, the newly formed Pd atoms are deposited on the {100} facets and twin boundaries, respectively, due to their relatively higher energies. For octahedra and tetrahedra, the Pd atoms self‐nucleate in the solution phase, followed by their growth into small particles. We can control the regrowth rate relative to etching rate by varying the concentration of HCl in the reaction solution. As the concentration of HCl is increased, 18‐nm Pd cubes are transformed into octahedra of 23, 18, and 13 nm, respectively, in edge length. Due to the absence of regrowth, however, Pd octahedra are transformed into truncated octahedra, cuboctahedra, and spheres with decreasing sizes whereas Pd tetrahedra evolve into truncated tetrahedra and spheres. In contrast, Pd icosahedra with twin boundaries on the surface are converted to asymmetric icosahedra, flower‐like icosahedra, and spheres. This work not only advances the understanding of etching and growth behaviors of metal nanocrystals with various shapes and twin structures but also offers an alternative method for controlling their shape and size. 
    more » « less